Automated Python Grading with GradeScope

Dr. Paul Vrbik

December 1, 2023

1/42

Overview Slide

In this session we will learn how to set up a GradeScope for students

to submit Python code for automatic evaluation.
In particular we cover,

1. Unit testing with UnitTest.

2. Configuring unit tests for GradeScope.

3. Manual marking with GradeScope.

2/42

Resources

The following are web-links to resources used throughout this talk.

1. UQTools tool.py.

2. unittest library.

3. plotcheker library.

3 /42

https://github.com/UQTools/autograding?fbclid=IwAR1xHtnJFwgtjSiqIcsjhu3OTswT1rA83BoNYj5KQa_kfcyqMh4vaeRK8-c
https://docs.python.org/3/library/unittest.html
https://github.com/jhamrick/plotchecker/tree/master

§Setting the Assessment

4/42

Programming Assesments

Typically programming assessments will have two components:

1. A specification sheet specifying the assessment item and
administrative items like due date, late policies, how to submit

etc.

2. A framework or starter code.

)

5 /42

Specification Sheet

Question

Write a function

foo(x: int) -> int

which doubles its input.

6/ 42

Starter Code / Stub File / Framework

submission.py

1 nnn

2 First Last # update with your info

3 500000000 # update with your info

4 "

6 def foo(x: int) -> int:

7 """ Return double the input.
8 >>> foo(1l)

9 2

10 >>> foo(2)

11 4

12 fen

13 pass

7/42

§Unit Testing

8 /42

Unit Test

Unit testing is a type of software testing
where individual components (e.g.
functions and procedures) of a piece of

software are tested.

A wunit test is (perhaps) the simplest type

of test one can perfom.

9 /42

UnitTest Library

The unittest library is a unit testing framework that is similar to

other popular testing libraries (e.g. Junit).

It supports ...
1. test automation,
2. setup and shutdown code, and

3. aggregation of tests into collections.

10 /42

10

test.py

import unittest

import submission This s student code. In this directory
class TestFoo(unittest.TestCase): Test group
def test_foo(self): Single test.

self.assertEqual (submission.foo(1), 2)

if __name__ == ‘__main__’: Do this when calling file.

unittest.main()

11 /42

10

11

12

13

14

> 1s
submission.py test.py

> python3 test.py

FAIL: test_foo (__main__.TestFoo.test_foo)

Traceback (most recent call last):
File "../test.py", line 7, in test_foo
self .assertEqual (submission.foo(1), 2)

AssertionError: None != 2

Ran 1 test in 0.000s

FAILED (failures=1)

12 /42

Student Submission

10

11

12

13

submission.py

Alice Liddle
s01234567

def foo(x: int) -> int:
""" Return double the input.
>>> foo(1)
2
>>> foo(2)
4

return 2*x

13 /42

> 1s
submission.py test.py

> python3 test.py

Ran 1 test in 0.000s

0K

14 /42

$Moving Tests to GradeScope

15 /42

Preparing GradeScope Files

In order to streamline the process of creating the various, and
required, files for GradeScope Brae Webb wrote tool.py (UQTools)

which automates the dirty work.
Supposing students were instructed to submit submission.py then...
1. Place tool.py in the same directory as your assignment files.

2. Create at least one file prefixed with test_ comprised of unit

tests that imports all of tool.py.

3. Do >python3 tool.py and follow prompts to obtain an

autograder.zip file.

16 / 42

10

test.py

from tool import x*

import submission

class TestFoo(TestCase):

def test_foo(self):

self.assertEqual (submission.foo(1), 2)

if __name__ == ‘__main__’:

unittest.main()

This imports unittest

17 /42

© W N OO s W N

I T
O © W N O R W N = O

> 1s

submission.py test_foo.py tool.py

> python3 test_foo.py

Ran 1 test in 0.000s

0K

> python3 tool.py
test_foo (test_foo.TestFoo.test_foo) passed

Generating autograder.zip
Found extra file .DS_Store in directory, should this be included? (y/n) n
Not including .DS_Store

Found extra file __pycache__ in directory, should this be included? (y/n) n

Not including __pycache__

> 1s

autograder.zip submission.py test_foo.py tool.py

18 /42

Preparing GradeScope (Create Assignment)

< C @& gradescope.com a ® % » 0O ?

dligradescope <=

by Turnitin

Your Courses

Your Courses Summer 2023
Welcome to Gradescope!
Click on one of your courses CSSE1001S_7360_61263 DEMO1001

Necount o blow, (C55£1001/7030) pemo Course
Introduction to Software No Published Grades
Engineering (St Lucia).
Semester 2, 2023

+ Create a new course

5 assignments 1 assignment

19 /42

Preparing GradeScope (Create Assignment)

DEMO1001 summer 2023

Course ID: 674501

Description

Demonstration purposes.

Things To Do

© Create your first assignment from the Assignments page.

2 Active Assignments Released Due (AEST) v & Submissions % Graded & Published Regrades

You currently have no assignments.

Create an assignment to get started.

Create Assignment

20 /42

Preparing GradeScope (Programming Assignment)

Create Assignment

o Assignment Type

2 Assignment Settings

< Exit
Assignment Types
B Exam / Quiz
& Homework / Problem Set

@ Bubble Sheet

</> Programming
Assignment

0 Online Assignment

Exam
= . n =

Select an Assignment Type

Gradescope supports a variety of paper-based, online, and code assignments. Click
on one to learn more.

21 /42

Create Assignment

¥ Assignment Type

< Go Back
Assignment Type

</> Programming
Assignment

© rssnmentseencs

*Required fields

Assignment Name *

Your First Programming Assessment

Submission Anonymiz
[Enable anonymous grading

Hide identifiable student information from being listed with submissions.

ion

Autograder Points * Manual Grading

10 Enable manual grading

Release Date * (AEST) Due Date * (AEST)

2023-11-27, 02:44 PM 01 2023-12-02, 02:44 PM 0

[7] Allow late submissions Late Due Date (AEST)
Yyyy-mm-dd,

Group Submission
["] Enable group submission Limit Group Size:
No Max

Create your Rubric
() Before student submission
@ While grading submissions

Leaderboard
[[] Enable leaderboard & Default # Of Entries
No Max

22 /42

Manual Grading Rubric (Optional)

Outline for Your First Programming Assessment

12 points total

Create questions and subquestions via the + buttons below. Reorder and
indent questions by dragging them in the outline.

Title Points
1 Autograder 10.0
2 PEP8 2

2.1 Variables names 1

2.2 Line Endings 1

+ New Question

Cancel Save Outline

23 /42

Upload Autograder

allgradescope

1]
v

Configure Autograder

Upload your autograder code and change settings here. You can also come back to this step later, but submissions will not be
automatically graded until then. Please follow our guidelines for structuring your autograder.

Note: Uploading an autograder zip file will automatically update your Dockerhub image name once it is built successfully.

* Required field

Autograder Configuration
@ Zip file upload () Manual Docker configuration

Autograder *

[@ Please selectafile | Select Autograder (.zip) Qﬂum tool.py creates this zip for you

Base Image OS Base Image Version Base Image Variant

Ubuntu v 22.04 v Base v

Choose the base image that will be used to build your autograder. This determines the operating system version and packages available in your autograder.

ﬂ‘mm hit the button

24 /42

Update Autograder / Test Autog

Docker Image Status

built as of Nov 30, 2023 at 3:04:54 PM Al

~ Build Output

Get:7 NUPI//SECUrity.ubuntu.com/ubuntu jammy-security/multiverse amd64 Packages [44.0 kB]
buntu.com/ubui

Get:8 http://security.

rader

EST

ntu jammy-security/main amd64 Packages (1265 kB]

Get:9 http://archive.ubuntu.com/ubuntu jammy/restricted amdé64 Packages [164 kB]
Get:10 http://archive.ubuntu.com/ubuntu jammy/main amd64 Packages [1792 kB]

Get:11 http://archive.ubuntu.com/ubuntu jammy-updates/restricted amd64 Packages [1520 kB]
Get:12 http:/archive.ubuntu.com/ubuntu jammy-updates/universe amdé64 Packages [1292 kB]
Get:13 http:/archive.ubuntu.com/ubuntu jammy-updates/multiverse amd64 Packages [49.8 kB]
Get:14 http:/archive.ubuntu.com/ubuntu jammy-updates/main amdé64 Packages [1535 kB]
Get:15 http:/archive.ubuntu.com/ubuntu jammy-backports/universe amd64 Packages [32.6 kB]

Get:16 htt]

/archive.ubuntu.com/ubuntu jammy-backports/main amd64 Packages [78.3 kB]

Get:17 http://security.ubuntu.com/ubuntu jammy-security/universe amdé64 Packages [1027 kB]

Get:18 http://security,ubuntu.com/ubuntu jammy-security/restricted amd64 Packages [1494 kB]

Fetched 28.6 MB in 2s (11.5 MB/
Reading package lists...
+ bash /autograder/source/setup

WARNING: apt does not have a st

Reading package lists...
Building dependency tree...
Reading state information...
python3 is already the newest vy
0 upgraded, 0 newly installed,
+ apt-get clean

+ rm -rf /var/lib/apt/lists/arc
Removing intermediate container

s)
.sh

able CLI interface. Use with caution in scripts.

ersion (3.10.6-1~22.04).
0 to remove and 30 not upgraded.

hive.ubuntu.com_ubuntu_dists_jammy-backport
63d96260ecle

Successfully built 019fldfefaab
1ly tagged g:

once st

autograders:us-prod-docker_image-313543

B erroT

InRelease /var/lib/apt/lists

ally built then...

25 /42

Test the Autograder (Instructor View)

Submit Programming Assignment

© Upload all files for your submission

Submission Method

@ & Upload () O GitHub () @ Bitbucket

Add files via Drag & Drop or Browse Files.
Name Progress

submission.py

Cancel Upload

26 /42

Test the Autograder (Instructor View)

Autograder Results Code

Autograder Output (hidden from students)

Ran 1 test in 0.000s

OK

test_foo (test_foo.TestFoo) (1/1)

Your First Programming
Assessment

Student
Unknown Student (removed from roster?)

Total Points
1/12pts

Autograder Score
1.0/10.0

Passed Tests
test_foo (test_foo.TestFoo) (1/1)

@ Graded

27/ 42

Bells and Whistles
We have created the absolute most basic autograder (one function and

one test).

Let us now learn how to make a more robust tester with multiple tests
of different weights with different visibility (e.g. see result

immediately versus after grade release).

28 /42

1

M

class TestFoo(unittest.TestCase):
Quweight (10) Number of points for this test.
@number ("1") Can be given in any order.
Qvisibility(‘after_published’)
When students should see test outcome, omit for immediate.
def test_foo(self):
""" Student sees this.

self.assertEqual (submission.foo(1), 2)

29 /42

Test the Autograder (Instructor View)

Autograder Results

Autograder Output (hidden from students)

Ran 1 test in 0.000s

OK

1) Student sees this. (10/1 0)}
A Test Number j

@

Hidden Test

Your First Programming
Assessment

Student
Unknown Student (removed from roster?)

Total Points
10/12 pts

Autograder Score
10.0/10.0

Passed Tests
1) Student sees this. (10/10)

@ Graded

30 /42

Let us add another test to TestFoo...

10

class TestFoo(unittest.TestCase):

Qweight (5)
@number ("2") Can be given in any order.
def test_foo_again(self):

"t f00(5) should be 10

self.assertEqual (submission.foo(5), 10)

31/42

Instructor View — Test Autograder

Autograder Results

Autograder Output (hidden from students)

Ran 2 tests in 0.000s

OK

1) foo(1) should be 2 (10/10)

2) foo(5) should be 10 (5/5)

@

Your First Programming
Assessment

Student
Unknown Student (removed from roster?)

Total Points
15/12 pts

Autograder Score
15.0/10.0

Passed Tests
1) foo(1) should be 2 (10/10)
2) foo(5) should be 10 (5/5)

@ Graded

32 /42

Student View (After Submission and Before Deadline)

Autograder Results . a
9 Code Your First Programming @ Ungraded

Assessment
2) foo(5) should be 10 (5/5)

Student
Alice Liddle

Total Points
-/12pts

Autograder Score
-/10.0

Passed Tests
2) foo(5) should be 10 (5/5)

33 /42

$AutoGrading 10 Sessions

Question
Write a function

foo() —-> None:

that
1. Prompt the user until they enter a positive integer.
2. Prints the integer (say n) n-many times.

3. Quits if q is entered and prints Goodbye! but otherwise repeats.

35/ 42

10

11

12

13

14

def foo() -> None:

""" TImplements foo according to the spec-sheet.

>>> foo()
Prompt: X
Prompt: 3
333
Prompt: O
Prompt: 1
1

Prompt: q
Goodbye!
pass

36/ 42

1

w

10

11

12

13

from tool import *

class TestFoo(unittest.TestCase):
Oweight (1)
def test_foo(self):

""" The doc-string example from spec.

def test_foo(self):
inp = [‘X’, ‘3’, ‘07, ‘17, ‘q’] Stream of input
io = ‘io.txt’ Entire 10 session
self.assertI0FromFileEquals(submission.foo,
‘inp.txt’,

‘io.txt’)

37/ 42

Prompt:
Prompt:
333
Prompt:
Prompt:
1
Prompt:
Goodbye!

io.txt

38/ 42

§AutoGrading MatPlotLib

10

11

12

13

14

plotcheker documentation

fig, axes = plt.subplots(l, 3)

X, y = np.random.rand(20), np.random.rand(20)

create a scatter plot with plot

axes[0] .plot(x, y, ‘o’, color=‘b’, ms=5)

create a scatter plot with scatter

axes[1] .scatter(x, y, s=25, c=‘b’)
create a scatter plot with plot and scatter!
axes[2] .plot(x[:10], y[:10], ‘o’, color=‘b’, ms=5)

axes[2] .scatter(x[10:], y[10:], s=25, c=‘b’)

fig.set_size_inches(12, 4)

40/ 42

10

11

12

13

-
'S

plotcheker documentation
from plotchecker import ScatterPlotChecker

for ax in axes: run the same assertions on all the plots!

pc = ScatterPlotChecker (ax)
pc.assert_x_data_equal (x)
pc.assert_y_data_equal(y)
pc.assert_colors_equal(‘b’)
pc.assert_edgecolors_equal(‘b’)
pc.assert_edgewidths_equal(1l)
pc.assert_sizes_equal(25)
pc.assert_markersizes_equal(5)

pc.assert_alphas_equal(1.0)

print (‘Success!’)

41/42

Questions?

42/42

